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ABSTRACT

An iteration method for solving an integral representation of Maxwell's
equation is presented. In this method, the scattering body is divided into
1it and shadow side regions separated by the geometric optics boundary. The
total current at any point on the surface of the scatterer, induced by an
incident field, is the sum of an approximate optics current and a correction
current. Both of these currents are computed by iteration. The general
theory is presented and applied to the problem of scattering from a
two-dimensional square cylinder. The results are compared with the method of
moments and excellent agreement 1is obtained. Due to its structure, the
iteration method, unlike the method of moments, does not give spurious results
at internal resonances of the scatterer. The method is applicable to complex

structures and can be used for non-perfect conductors.
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I. INTRODUCTION

In this report, a method for computing the electromagnetic scattering
properties of complex objects is presented. This method can deal with
electrically small or large bodies alike and is not restricted to perfect
conductors, It is an iteration method based on an integral representation of
Maxwell's equations.

In Chapter 2, a brief review of the integral equations for the
electromagnetic field is given., It is shown how they can be combined with
impedance boundary conditions in order to deal with non-perfect conductors and
as a special case of interest, coated perfect conductors.

Chapter 3 takes a look at the AS-MM hybrid diffraction technique which is
the starting point of the iteration method. In this hybrid technique, the
current, induced on the surface of a scatterer by an incident field, is
approximated by optics currents which are supplemented by correction currents
in order to give the true current. The approximate optics currents are
computed by iteration, whereas, the correction currents are computed by using
the moment method in certain "moment method regions". Although this approach
has been shown to be successful for simple geometries, the task of dividing up
a complex body into moment method and asymptotic regions is a formidable
one. These moment method regions complicate the programming even for perfect
conductors let alone non-perfect ones.

In an attempt to do away with the moment method regions, the iteration
method was developed. This method is described in Chapter 4. The two methods
are basically similar in that they both define the same approximate optics
currents and the same correction currents, However, no moment method regions
are defined and the correction currents are found by iteration just as are the

optics currents,
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In Chapter 5, some numerical results for the two-dimensional problem of a
square cylinder are exhibited. Results for the iteration method are compared
to results obtained by the method of moments, which is considered exact. The

results are in general excellent except for small regions in the shadow side

for large bodies. This question is examined in Chapter 6 and a possible way

of improving the iteration method, by changing the iteration procedure and the °)

approximations made, is suggested. Chapter 7 is devoted to a summary and a

WL

few concluding remarks,
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2.  THE INTEGRAL EQUATIONS FOR SCATTERING FROM NON-PERFECT CONDUCTORS

Consider an arbitrarily shaped non-perfectly conducting body situated in

a vacuum. Let the body be illuminated by an incident electromagnetic field

FIRIUR,. ) G

(31, ' ). Then the total electric and magnetic fields at an observation

point R are given by (with suppressed time variation exp(jwt))[1]

B(R) = TE(R) - T £ (den (n'xR) G(r) - (n'xE)d’ G(r)
S
- (n' - ) 6(r)) ds! 1y .
A(R) = m*(m + T4 (] ﬁ— (n'xt) G(r) + (n'xA) x¥* G(r)
S 0

+ (n' - B o6(r)} ds' (2)

where T = (1 - Q/lhv)"1 and # is used to denote the principle value integral
over s, i.e,, the integral over the closed surface excluding an e neighborhood
of the singularity in G(r) at r = 0. The absolute value of the solid
angle, @, subtended by the deformed surface (in taking f) at the field
point R must be determined from the geometry of the surface. However, if s is
smoooth at R then @ = 2n (T = 2) and if R is not located on the surface
- then @ = 0 (T = 1). All the parameters and variables (g, Ng? etc.) connected
with the electromagnetic field are defined in Appendix A. Note that R s
3 allowed to be located on a surface whose tangent is not a differentiable
E function of position, however, the field is required to possess a finite mean
tj; value at R. Equations (1) and (2) are referred to as the electric field

; integral equation (EFIE) and the magnetic field integral equation (MFIE).
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Equations (1) and (2) can be rewritten as

E(R) = TE(R) - T § Gand 6(r) + Mt G(r) - (n'
S
H(ﬁ) = Tﬁi(ﬁ) + T 4f (- %ﬁ M G(r) + Jxde G(r) + (6' . ﬁ) 9 G(r)}y ds'

S 0

where, from Maxwell's equations:

~ ~

Jn .
nets= —39 . d, n' « @ = E%; AN

The scattered field can be obtained from Equations (4) and (5) as follows:

ES(R) = E(R) - ' (R)

AS(R) = A(R) - AT (R

« E) ¥ 6(r)) ds

(5)

(6)

(8)

and since for R ¢ S, T = 1, Equations (4) and (5) together with (7) and (8)

yield

ES(R) = -/ t3an d 6(r) « B’ G(r) - (n* - E) F"

S

G(r)} ds'

AS(R) = [ (- %E fG(r) + 3xv' G(r) + (n* « H) &' G(r)} ds’

.........
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The equivalent surface currents can be found from Equations (1) and (2) by

. 2om e e
; .

T"rvT
B . v P
O
. P
.

considering Res with s smooth, so that T = 2 and a unit vector ; can be
defined at R on s. Then upon taking the vector cross product of ﬂ with (1)

and (2) and using Equation (3), Equations (1) and (2) yield:

ARy = 2 nxBT(R) - 2 nxd (jgngdG(r) + Px¥'G(r) - (n* - ) V'6(r)} as®  (11)
S

JR) = 2 oxh'(R) + 2 nx f- L Ao(r) « IxFrG(r) + (at - R) F6(r)) ast (12)
S 0

with n' - £ and n* - R given by Equation (6).

Equations (11) and (12) are two coupled equations for the surface
currents J and M, which when computed can be used in Equations (9) and (10) to
find the scattered field. These equations can be decoupled by using the

impedance boundary conditions [2]:

nxfl = 23 (13)
or
axd = --% i (14)

On substituting (13) and (14) in (11), (12), and (6), the following decoupled

equations are obtained:

AR) = 2nxt (R) - 2nx £ Baxfl) o(r) + Bxd G(r) - (a' - BT G(r)) ds' (15)
S r

3(R) = anxh' (R) + 2nx F058Z (M) G(r) + 3t G(r) + (n* + F) §' G(r)) ds'(16)
S

with 3' . £ and 5' - R given by:

..........
...................
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n' o t= E%: $re(n'xM), n-f = __EL Ve (n'xd) (17)

Where, Zr = Z/n0 is the relative surface impedance of the scatterer.

The complexity of the above integral equations can be reduced by
considering a specific physical situation, The scatterer that will be
considered here is that of a perfect conductor coated with a layer of
non-perfectly conducting material. Furthermore, the following assumptions

will be made [3]:

1. The index of refraction of the coating is very large and has a large
imaginary part. |N] > 1 and Im(N) > 1.

2. The fields outside the body vary slowly with respect to the dimension of
the interior wavelength,

3. The thickness, d, of the coating, is less than the principal radii of
curvature of the outer surface, and gd << |N]

4, The radii of curvature of the surface are large compared to the interior

wavelength,

Under these conditions, the wave inside the coating will be TEM with

direction of propagation inward and normal to the surface. Hence,
nt=n-fi=0 (18)

and the surface impedance , Z, will be independent of the polarization of the

incident radiation and will be given by:

Z = jn tan Ngd (19)
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which is the expression that would be obtained for Z without the above
assumptions but for normal incidence. Finally, it should be noted that when
dealing with coated edges, Equation (19) does not hold at the edge or within a
few skin depths (of the coating material) from the edge.

Substituting Equations (18) 1in Equations (15) and (16) yields the

following expressions for the surface currents:

M(R) = 2nxt’(R) - 2nx £E(naf) G(r) + Bl G(r)) ds' (20)
r
3J(R) = 20x' (R) + 2nx £ 382, (mxd) G(r) + Ix¥'G(r)} ds’ (21)
S

whereas, from Equations (9) and (10), the scattered fields are given by

E3(R)

-/ {8n,d 6(r) + Mx¥' G(r)} ds' (22)
S

ARy = [ ( - J M G(r) + 3x¥' G(r)} ds'

S O

For a perfect conductor, fi=nxt =n+%=0and a similar analysis to that

given above leads to

axtl(R) = nx ﬁ {ign, J 6(r) - 329 (%« 3) ¥ 6(r)} ds (23)

3(R) = 2nxB' (R) + 2nx £ Ix¥ G(r) ds' (24)

£5(0) = - [Litng 3 66r) - 2 (1 - 9 8 6y o (25)

B3 (R) = { Ix¥' 6(r) ds (26)
7
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3. THE AS-MM HYBRID DIFFRACTION TECHNIQUE

The general theory of the AS-MM hybrid diffraction technique is described
in detail in [4]. This technique is based on the MFIE as given by Equation
(24). The basic approach is to divide the total surface S of the body
into S2 and S%, which represent the lit and shadowed regions, respectively.

The currents in these regions are given by (26), which can now be written as:

SUR) = 2nxBT(R) + 2nx £ F5T0 6(r) ds' o+ 2nx § 3SKE 6(r) ds (27)
st sS

FSR) = anxfi'(R) + 2nx £ I G(r) ds' + 2nx § IS 6(r) ds' (28)
st s°

Each region is further divided into an asymptotic (AS) region and a moment
method (MM) region. The MM regions are taken to be small regions on either
side of the shadow boundary ana the AS regions as the remaining regions
in s* and SS. In order to be able to solve for J* and §° in the AS and MM
regions, it is assumed that 55 in Equation (27) is small so that it can be

neglected. This defines an approximate 1it side optics current jﬁp given by
P R) = onxdi'(R) + 2 nx £ 3 P 6(r) ds (29)
op g op
S

Then replacing 32 in (28) by Jgp defines an approximate shadow side optics

current

(R) = 2nxf'(R) + 2nx 4 Jg x3' G(r) ds' + 2nx § 3% x¥' 6(r) ds*  (30)
st 5

The exact currents in SE and S% are then given by




FEL T R T T e T 0w ' T W e WY L, ¥ e T s T e - 2R e - -
" ald- adlh- ama ati s2ACaddan ghen anghart &g Bagt A A A Badtiin Radh e s Rl iRt o G R N R T e e e LT TR . T a - LI - W—

F®) = B 0 « TR (31)

l PR = 330« 18R (32)
Substituting Equations (31) and (32) into the MFIE (27) and (28) and using q

(29) and (30), the following expressions for the correction

currents Tz and Ts are found:

Tl(ﬁ) = Zaxf 5:px$' G(r) ds' + Zax} T G(r) ds' + Zax} ISxve G(r) ds' (33)
s % s
S S S

15(R) = 2nx £ 153" 6(r) ds* + 2nx § T55¥' G(r) ds® (38)

sS st

The process that is defined for solving the above system of equations is as
follows. ﬁip is computed by iterating Equation (29) with Zaxﬁi(R) the initial
current. Then jo: is  computed by iterating  Equation  (30)
using 2nxA (R) + 2nx # Jﬁva G(r) ds' as the initial current. Equations (33)
and (34) are now written down for S;M’ iS’
currents in the MM regions are now computed by neglecting the integrals over

SS S

S MM and SAS' The correction

the correction currents in the AS regions. It is argued that without ignoring

L

those current terms containing integrals over lAS and IZS in the expressions

el T

for T;M(ﬁ) and T;M(ﬁ), it is not possible to derive sets of equations which
can be solved by the moment method. The correction currents in the AS regions

can now be computed by integrating over the moment method correction currents,

v T

q

- again ignoring those current terms containing integrals over TXS and TRS'

ko

L The above process defines a first-order approximation. A second-order
i approximation is obtained by substituting the values obtained for Tl and 1% in
q

P' » » 1] 21 S 2 S

3 the MM and AS regions in the integrals for TMM(Q), TMM(ﬁ), TAS(Q) and YAS(Q)
-

;.

e 9
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but this time without neglecting the integrals over Tis and TZS‘ Higher order

approximations are obtained in a similar fashion.

It was found in [4] that it was necessary to use second-order, and in

.

some cases, third-order approximations to yield a good value for the

current. However, no criterion was found for fixing the size of the MM
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regions.
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4, THE ITERATION METHOD
The iteration method is based on the AS-MM hybrid technique and is an
attempt to do away with the MM regions of the latter. Hence, the exact

current is written as
JR) = I (R) + 1(R) (35)

and the surface of the scatterer is divided into 1lit and shadow regions
separated by the geometrical optics shadow boundary, sz(ﬁ) and sz(ﬁ) are ‘
given by Equations (29) and (30), respectively, and are solved by iteration.

The initial currents for S* and SS being the same as those of the AS-MM hybrid
method.

Having solved for the optics currents, the correction currents are now
considered. Instead of using MM regions as in AS-MM, Equations (33) and (34)
are now solved by iteration just as the optics current were. Only one
approximation is called for here and that is the neglecting of the integral
over 1% in Equation (33). In second- and higher-order approximations, this
integral is put back in Equation (33).

The full set of equations for the iteration method will be given below.
These equations are based on Equations (20) and (21) describing the magnetic
and electric surface currents induced on a perfect conductor coated with a
thin layer of material with a very large refractive index. The magnetic
correction currents will be denoted by fi. Hence, the exact magnetic current

is given by

A(R) = ﬁop(ﬁ) + N(R) (36)

........................
. L .




......................................

Since the equations are rather cumbersome for the general case, the following

[URPPIIING T IIPI0

two operators will be defined:

L[] = 2nx § Ix¥' 6(r) ds’ (37)
S

K[J] = 2nx § jg(nxJ) G(r) ds' (38)
S

The optics currents are given by:

. e

ﬁﬁp = anxh 4 K[jﬁpzr] . L[jﬁp] (39) 3

S ~ L L 3 S q

ﬁop = 2nxf’ + K[joer] + L[jop] * K[ﬁoplr] + L[Uop] (40) ;
ﬂgp = ke 4 K[ﬁip/lr] + L[ﬁip] (41)
hgp - -2nxE' + K[ﬁﬁp/zr] N L[ﬁﬁp] . K[ﬁ;p/lr] + L[ﬁzp] (42)

\ The correction currents are given by:

. GRS 6 2% IRT 0o I )20 RT S 00 IR0 i 20 RV ) (43) .
- 15 - k12, + LMY+ k1%2,0 + LLT®) (44) %
i .
0 = kCR*/2. 0 « LOR'D « KOS /2,0 + LIRS D + (KCRY/Z, T + LKD) (45) :
s
RS = kgRt/z 3+ LORFD + kRS20 + LIRS (46)

RN PCINPS . I
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Do o

The case of a perfect conductor can be retrieved from these equations by

setting M = fl = 0 and then Zr = 0. The terms in the braces are set to zero

for the first-order calculation.
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5. THE SQUARE CYLINDER

The first application of the iteration method to be considered is that of
a two-dimensional cylinder of a square cross section. The computer program
for the iteration method was set up to solve for the electric currents only,
since, as can be seen from Equations (39) - (46), the magnetic currents can be
obtained from the same program by simply performing the duality

transformation:

>

Jg— N
I—
i— -t

Zr-* 1/Zr (47)

The geometry under consideration is shown in Figure 1. The computer
program uses the angle of incidence e‘, although the complementary

angle a will also be referred to here. For a two-dimensional scattering

problem
6(r) = 45 17 (ar) (48)
7'6(r) = Ll H(z)(er) (49)
R LH

where Héz) and H§2) are the Hankel functions of the second kind of order

zero and one, respectively. Due to symmetry, the angle of incidence can be

restricted to

o 450 < o < 900 (50)
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ii where the case of grazing incidence has been omitted for the time being. With
Ef the above restriction, sides 1 and 4 are the lit sides, whereas sides 2 and 3
T

are the shadow sides. The distance d along the perimeter of the cylinder is
measured in an anticlockwise direction from the origin of -he coordinate
system which is situated at the corner A,

The incident field is given by

gl g emdu - R (51)
where, & is the direction of propagation of the incident field and R is the
radius vector to the observation point.

For the case of a perfectly conducting square cylinder, as for any
structure comprised of planar surfaces, the principle value integrals reduce
to ordinary integrals due to the fact that the L[j], or L[T], terms are
identically zero for the integration and the observation point on the same
side of the cylinder. However, the introduction of a finite conductivity
gives rise to K[M], and K[fi] terms for which the principle value does have to
be taken. The calculation of these terms is discussed in Appendix B.

Figures 2 and 3 show the magnitude and phase, respectively, of the
electric current on a .705x wide «cylinder with a surface impedance
of Zr = (.56, - .16). The computation was carried out for the first order
only. Due to the poor result as compared to the method of moments, MM,
computation (considered exact) [5], the same run was made again, but this time
for a perfect conductor. The results are shown in Figures 4 and 5. Despite
the fact that the overall agreement is much better this time, there is still

an unexplained discrepancy at the lit edge A.

15
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In an attempt to solve this specific problem and at the same time to

retain the problem at a reasonable level of complexity, the case of interest

was restricted to that of a perfect conductor.

Clearly, there 1is some difficulty involved in computing the currents

-y

close to the edge of the cylinder. In order to understand this problem,

it el i aA M g o "v:u*.rv,v.] wY.v.Y.
PN . Y Dl PSP

consider what happens when computing the optics current at R on side 1:

. = oml] -
Jop(il) = 2nxH + 2nx {'

30;(2'4) ¥ G(r) deg (52) '
; ;

where R = 21; and R' = 2&}. Then, for field points close to the edge A

| S — SO0

(il + 0) and integration points close to A (27 » 0), the

_,,
. _a

distance r = \ﬁ - Q'\ » 0 and the Hankel function has the following small

parameter behavior:

] H§2)(sr)~1

BT (53)

Numerical integration of the inverse distance function 1/r as r » = calls for

y very samll subdivisions in order to minimize the error. The closer the edge

b

t is approached, the smaller the subintervals would have to be. This process is

b

L. clearly  unfavorable since the  computation time would increase

a8 4

7{ correspondingly. An analytical evaluation of Equation (52) (for details see ]

’.'v

& Appendix C) as 2y 0 and 25 + 0 yields

S ]

. !

{ Jt (&, » 0) = 2H1(2 > 0) -1 J 4(2‘ + 0) (54) !
op'1 1 2 “op'Td 4

;j Numerically integrating the integral in (52) for points close to the edge, but

Ef avoiding numerical instability, would mean that the minimum possible

g

p. 16 g
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values of ¢, and 2& would be about 0.02A and hence the edges would be
truncated. In Figure 4, the minimum value of approach to the edges, §, was
taken to be § = .0lx giving an all around instability. On the other hand,
Equation (54) sets no lower bound on the value of §, so that the edges can be
left intact.

The result of numerically integrating Equation (52) with the minimum
values of 4y and 1& given by & = 0.02Xx is shown in Figures 6 and 7 which show,
respectively, the magnitude and the phase of the current induced on
a 0.6 side square cylinder for a = 450 . Notice the overall discrepancy
between the current computed by MM and that computed by the iteration

method. Figures 8 and 9 show the vast improvement obtained by using Equation

(54) for the iteration method, witi the minimum values of g
-6,

and g2} taken to

1 4
be 6§ = 10 "A. This value was henceforth taken as the fixed minimum vaiue
for §. The influence of the order of the approximation can be seen by
comparing Figures 10 and 11, a first order calculation, with Figures 8 and 9,
a third order calculation. As can be seen, there is an overall improvement in
the value of the magnitude of the current in going from first order to third
order, except in the deep shadow region.

Further third order results for § = 10'6A are shown in Figures 12 to

21. Figures 12 to 15 are for a = 450, w = 2.4x and w = 3.7A, whereas Figures

16 to 21 are for a = 659, w = .6x, 2.4x and 3.7x.
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6. [MPROVING THE ITERATION METHOD

The firnal result of any iteration methad 1is dependent on the initial
value used to start off the iteration procedure. As already explained in
Chapters 2 and 3, the present iteration method is based on the AS-MM so
that jgp is iterated first with an initial value of 2axﬁi and then 3zp 1S
iterated with an initial value of 23xﬁi + ZGx / Jﬁpx§ G(r) ds'. Figures 22
and 23 show the resulting magnitude of the optics current as compared with the
MM for W = .6Xx and 3.7x» and a« = 650, Note that in both cases, the shadow side
optics current is much closer to the true current than the 1it side optics
current,

The process described above involves taking the shadow side current as
zero when iterating the 1it side current. This explains the relatively smooth
slow varying result obtained for the 1it side optics current, for there are no
iterations with the shadow side at this stage. On the other hand, when
computing the shadow side current, interaction with the 1it side is taken into
account., This explains why the shadow side optics current follows more
closely the true current than does the 1it side optics current.

A possible solution to this problem would be to start off by
computing sz and taking Jép as 2nxH'.  This would allow for interaction
between the shadow side and a reasonable approximation for the 1lit side.
Having iterated Jgp, the 1it side optics current can be computed
using j;p which would give a much better result than formerly when Jgp was

taken as zero. This approach, as well as others, will be tried out in the

near future.
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7.  CONCLUSION

An iteration method for solving the MFIE and the EFIE for a general
scatterer has been presented. This method is similar to the AS-MM hybrid
technique in that the true surface current is written as the sum of
approximate optics currents and correction currents on the 1it and shadow side
regions of the body. The two methods differ in the way in which the
correction currents are computed. In the hybrid technique the 1it and shadow
areas are further subdivided into moment method and asymptotic regions, the
former being the smaller. The MM region correction currents are then solved
by using the method of moments, while neglecting their interaction with the
asymptotic regions. The asymptotic correction currents are then obtained by
integrating the moment method region currents numerically, while again
neglecting the interaction between the asymptotic region. These interactions
are accounted for in second-order and higher approximations. In the iteration
method, the correction currents are obtained by iteration just as the optics
currents are. The only approximation made when computing the correction
currents via the iteration method being the neglecting of the contribution of
the shadow side correction current when computing the 1lit side correction
current. Again, in second- and higher-order approximations this contribution
is taken into account.

As an example, the case of a two-dimensional cylinder of square cross
section was considered. The currents obtained by the iteration method were
compared to the currents obtained by the method of moments. The overall
excellent agreement, except for small regions in the shadow region for large
bodies, suggests that the order of the iteration process should be changed,
viz., the shadow side optics currents should be computed first and then the

lit side optics currents, This small discrepancy in the shadow region does

19
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not, however, minimize the importance of the iteration method which has
successfully done away with the necessity of a moment method region on the
surface of the scatterer.

The formalism was shown to be adaptable to problems of non-perfect

|
3
|

conductors, and the special case of a coated perfect conductor was considered.
Finally, it 1is pointed out that the iteration method does not give

erroneous results for geometries having an interior resonance due to the fact

that the inhomogeneous integral equation for the surface current is formulated
as two inhomogeneous integral equations, one for the optics currents and one
for the correction currents and neither of these currents alone can sustain a
zero tangential field at the surface of the scatterer, The iteration method
has another advantage over the moment method in that it can be used for
electrically large bodies that the MM cannot handle, since it is not limited

by computer storage.
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APPENDIX A
DEFINITION OF ELECTROMAGNETIC QUANTITIES

The complex dielectric constant is given by

- VoL SeMy = = 1 - i
= eo(er Jer) €ofr eoer(l J tanée)

The complex magnetic permeability is given by

- - s " = ]
b= Ju uo(ur

e n = = ] - .
- Ju)) MoHp "o"r(l J tanﬁu)
A prime denotes the real part of a complex quantity
A double prime denotes the imaginary part of a complex quantity
A small subscript o refers to vacuum

A small subscript r means that quantity relative to the same quantity in

vacuum,
\ e! . .
€p = F dielectric constant
)
e" = —3—, where o = conductivity
r eom
)
ul = L - relative permeability
Yo
u"
u; == = relative magnetic loss factor
0

Gu is the magnetic loss angle
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hence,
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where
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is the dielectric loss angle

Y EMp = complex refractive index
w v enw = complex propagation constant
Bl JB"
= g N, A= xO/N
/ %-: a.n, = absolute impedance of medium
Hr
=/ == relative impedance of medium
r
o
=y — = free space impedance
0
= 8n
-8
n
) .
ril skin depth

€
Hefp rer

——— 1/2
2 {(u"s" - ut"e('_) + f( 'e! - u"e")z + (elu! + e’

LA N

>
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APENDIX B
t CALCULATION OF THE PRINCIPLE VALUE INTEGRALS
The integrals defined by Equation (38) are singular as r + o. These
integrals are computed by dividing them into subintervals which are integrated
Ei separately. The subinterval containing the singularity is of the form
§/2
[ =] H(()Z)(az) ds (B.1)
-§8/2

and is computed by taking its principle value. Here, 2 is a length parameter

-

and § is the size of the subinterval.

§

¢ The accuracy of the above integration depends on the width, §, and on the
b —

f approximation used for the asymptotic expansion of the Hankel function. The
;' usual small argument expression used for Héz) is [6]:

Hé”(sz)wl - J% zn(% Y8%) (8.2)

substituting (B.2) in (B.1l) yields a principle value of

~ . B8
12501 - 3% an(3E2) (B.3)

where any = ,57721566 is Euler's constant and e is the natural base of

logarithms.

The values of Héz) as given by (B.2) can be compared with its exact

values and it is found that Eq. (B.2) is in error for (2/A) » .02, giving rise

to an error in Eq. (B.3). From asymptotic analysis [7], we know that we can

use larger values of (£/)) and decrease the error by including higher order
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terms. The asymptotic expansion for ng) including terms of the

order (Bz)2 is [8]

H 8 (8) A1 - $(82)21 [1 - 32 an(d v8e)] - d(se)? (8.4)

yielding the following expression for the principle value of the integral I:

126([1 - 45(86)%1 (1 - 32 n(3E9)] - 7L(86)% (B.5)

Equation (B.4) is accurate for values of (2/x) < .l1. For a value of § = .121,
Eq. (B.3) has an error of 1.4% in comparison to Eq. (5), which can be

considered exact for this value of 6.
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APPENDIX C
CALCULATION OF THE EDGE CURRENTS

In this appendix, the result given in Eq. (63) will be derived. The

derivation will be given for a wedge of internal angle a. The geometry

involved and the definitions of the various quantities are described in Figure

24, The equation to be considered is
e) = 2nxli (2) + 2nx [ 3B(e)x G(r) da’ (C.1)
Now consider the integral

T(e) = 2nx | Pe) x¥ a(r) de

(C.2)
where
By =Bunt, e -2 alBen
therefore
1(e) = £ 1 ax(erxr)oB(e)ui? (sr) e’ (C.3)
Now

Ax(t'xr') = ax[E x((r' = t')t' + (P - n')n'}]
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N hence,

1 j8: T By (2

! 1(s) = 2=t [ 97(2') H%cosy de! (C.4)

; 2'=0

' where cosy =-% sina (C.5)
and r = //2‘2 + 12 - 2% £'cosa (C.6)

5 U

Using the small argument expansion for H%Z):

‘A

(2) ~ i 2
Hl (8ry==J n8r

we get, >

.. L £ sina
1) =8¢ | oPe) [J 2 ] [ o> ] de'
0

ngr r

where L is much greater than £ and gr is much smaller than unity. The above

expansion for the Hankel function can be used since we are only interested in
a small neighborhood around the edge. Therefore,
~ B gsina - dg*
T(2) = -t 3°(2* » 0) — | —— (C.7)
0 £'" + 4" - 2¢'2cosa
[1 This is a standard integral which can be integrated to give ®
9 .
g _ t B, , -1,L-z2co0sa -1
T(Z) = -= J (2" » o) [tan (m) - tan (- COta)] ‘
F ]
ﬁ therefore,
5 q
' 27 N
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A

t B/, -1 -1,
7Y (¢' » o) [tan - tan *( COta)}

12 » o)

H
]
2|t
[
w
———
Py
+
(o}
S
—
~of A
'
R
+
o}
— 3

Substituting Eq. (C.8) in (C.1) with ¢ » o gives:

jA(l + 0) 23xﬁi(z > 0) - E JB(z' + 0) (n - a)

m

or

A

J7 (2 » o)

24 (2 > 0) - °(xt > 0) (T2

For the example considered in this report

L

a = n/2, hence -%.
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